Thursday, 2024-12-12, 6:55 AM

Main Sign Up Login
Welcome, Guest · RSS
Site menu
Search
Site friends
  • acmgmat
  • nano-unt
  • fc-unt
  • accf
  • Statistics

    Total online: 3
    Guests: 3
    Users: 0
     Publisher
    Main » Articles » E-Learn » Calculus III

    Fractional integral interpretation

    ============================================================= 

    Manipulate[{ParametricPlot3D[{{(10^\[Alpha] - (10 - u)^\[Alpha])/
         Gamma[\[Alpha] + 1], u, u + 0.5*Sin[u]}, {(
         10^\[Alpha] - (10 - u)^\[Alpha])/Gamma[\[Alpha] + 1], 0, 
         u + 0.5*Sin[u]}, {0, u, u + 0.5*Sin[u]}}, {t, 0, 10}, {u, 0, 10},
        BoxRatios -> {1, 1, 1}, BoundaryStyle -> Directive[Blue, Thick]], 
      Plot[u + 0.5*Sin[u], {u, 0, 10}, Filling -> Bottom, 
       AxesLabel -> "f(t)=t+0.5Sin[t]"], 
      Plot[(10^\[Alpha] - (10 - u)^\[Alpha])/
       Gamma[\[Alpha] + 1], {u, 0, 10}, PlotRange -> {0, 10}, 
       AxesLabel -> 
        "g(t)=\!\(\*FractionBox[\(\*SuperscriptBox[\(10\), \(\[Alpha]\)] \
    - \*SuperscriptBox[\((10 - u)\), \(\[Alpha]\)]\), \(\(\\\ \)\(\
    \[CapitalGamma][\[Alpha] + 1]\)\)]\)"], 
      ParametricPlot[{(10^\[Alpha] - (10 - u)^\[Alpha])/
        Gamma[\[Alpha] + 1], m*(u + 0.5*Sin[u])}, {u, 0, 10}, {m, 0, 1}, 
       PlotRange -> {0, 10}, 
       PlotLegends -> {"Shadow on the wall"}]}, {\[Alpha], 0, 1}]

    Category: Calculus III | Added by: webmaster (2016-03-15)
    Views: 376
    SOFT JAR © 2024
    Create a free website with uCoz