Thursday, 2024-12-12, 7:41 AM

Main Sign Up Login
Welcome, Guest · RSS
Site menu
Search
Site friends
  • acmgmat
  • nano-unt
  • fc-unt
  • accf
  • Statistics

    Total online: 1
    Guests: 1
    Users: 0
     Publisher
    Main » Articles » E-Learn » Calculus III

    Gradiente

    =================================================================

    Manipulate[
     {{xmin, xmax}, {ymin, ymax}} = {{-2, 2}, {-2, 2}};
     isize = Medium;
     zmin = NMinimize[{f[x, y], {xmin <= x <= xmax, 
          ymin <= y <= ymax}}, {x, y}][[1]];
     zmax = NMaximize[{f[x, y], {xmin <= x <= xmax, 
          ymin <= y <= ymax}}, {x, y}][[1]];
     zlevel = -2(* zmin - 1.5 (zmax-zmin)*);
     Show[
      Plot3D[f[x, y], {x, xmin, xmax}, {y, ymin, ymax}, 
       ImageSize -> isize, PlotStyle -> Opacity[.5], 
       PlotRange -> {xmin, xmax}
       ],
      Graphics3D[{Red, Arrowheads[Large], PointSize[Large], 
        Thickness[Large]
        , Point[{point[[1]], point[[2]], f[point[[1]], point[[2]]]}]
        , Arrow[{ per = 0;
          {point[[1]] - per D[f[x, y], x] /. {x -> point[[1]], 
             y -> point[[2]]},
           point[[2]] -  per D[f[x, y], y] /. {x -> point[[1]], 
             y -> point[[2]]},
           f[point[[1]], point[[2]]] + per},
          {point[[1]] + D[f[x, y], x] /. {x -> point[[1]], 
             y -> point[[2]]},
           point[[2]] +  D[f[x, y], y] /. {x -> point[[1]], 
             y -> point[[2]]},
           f[point[[1]], point[[2]]] - 1}
          }]
        }]
      ,
      Graphics3D[{
        Texture[
         ContourPlot[f[x, y], {x, xmin, xmax}, {y, ymin, ymax}, 
          Axes -> False, PlotRangePadding -> 0, Frame -> False,
          Epilog -> {Red, Arrowheads[Large], PointSize[Large], 
            Thickness[Large], Point[{point[[1]], point[[2]]}]
            , Arrow[{{point[[1]], point[[2]]},
              {point[[1]] + D[f[x, y], x] /. {x -> point[[1]], 
                 y -> point[[2]]},
               
               point[[2]] +  D[f[x, y], y] /. {x -> point[[1]], 
                 y -> point[[2]]}}
              }]
            }
          ]]
        , EdgeForm[], 
        Polygon[{{xmin, ymin, zlevel}, {xmax, ymin, zlevel}, {xmax, ymax, 
           zlevel}, {xmin, ymax, zlevel}},
         VertexTextureCoordinates -> {{0, 0}, {1, 0}, {1, 1}, {0, 1}}]},
       Lighting -> "Neutral"
       
       ]
      , PlotRange -> All, BoxRatios -> {1, 1, 1}, FaceGrids -> {Back, Left}
      ]
     ,
     Row[{Style["f", Italic], "(", Style["x", Italic], ",", 
       Style["y", Italic], ") ="}],
     {{f, Function[{x1, y1}, 2 - (x1/2)^2 - (y1/2)^2], ""}, {
       Function[{x1, y1}, 2 - (x1/2)^2 - (y1/2)^2] -> 
        TraditionalForm[2 - (x/2)^2 - (y/2)^2]
       , Function[{x1, y1}, 1.5 Sin[x1 y1]] -> TraditionalForm[Sin[x y]]
       , Function[{x1, y1}, 1/3 x1 E^(y1/4) + 1/2 Cos[x1 y1]] -> 
        TraditionalForm[1/3 x E^(y/4) + 1/2 Cos[x y]]
       , Function[{x1, y1}, x1*Cos[y1]] -> TraditionalForm[x*Cos[y]]
       , Function[{x1, y1}, (x1^2 - y1^2)/2] -> 
        TraditionalForm[(x^2 - y^2)/2]
       },
      PopupMenu},
     Delimiter,
     Row[{"(", Subscript[Style["x", Italic], 0], ", ", 
       Subscript[Style["y", Italic], 0], ") = "}],
     {{point, {Mean[{.5 xmin, xmax}], Mean[{.6 ymin, ymax}]}, ""},
       {xmin, ymin}, {xmax, ymax}, ControlType -> Slider2D},
     TrackedSymbols :> {f, point},
     AutorunSequencing -> {1, 2},
     ControlPlacement -> Left
     ]

    Category: Calculus III | Added by: webmaster (2016-02-05)
    Views: 320 | Tags: funciones de varias variables, Gradiente
    SOFT JAR © 2024
    Create a free website with uCoz