Thursday, 2024-12-12, 7:50 AM

Main Sign Up Login
Welcome, Guest · RSS
Site menu
Search
Site friends
  • acmgmat
  • nano-unt
  • fc-unt
  • accf
  • Statistics

    Total online: 1
    Guests: 1
    Users: 0
     Publisher
    Main » Articles » E-Learn » Calculus III

    Polinomio de Taylor de dos variables

    =======================================================

    Manipulate[
     x0 = pt[[1]]; y0 = pt[[2]];
     Show[
      Plot3D[f[x, y], {x, 0, 5}, {y, 0, 5}, MaxRecursion -> 2, 
       Ticks -> None, PlotRange -> {{0, 5}, {0, 5}, {0, 4}}, 
       SphericalRegion -> True, 
       AxesEdge -> {{-1, -1}, {-1, -1}, {-1, -1}}, BoxRatios -> Automatic,
        Mesh -> False, PlotStyle -> Opacity[.6], BoundaryStyle -> None, 
       Boxed -> False, PlotLabel -> Row[{
          "Taylor series for a function \!\(\*FormBox[\(f(x, y)\),
    TraditionalForm]\) near a point \
    \!\(\*FormBox[\((\*SubscriptBox[\(x\), \(0\)], \*SubscriptBox[\(y\), \
    \(0\)])\),
    TraditionalForm]\)"
          }]
       ],
      Graphics3D[{Red, Sphere[{x0, y0, f[x0, y0]}, .04]}],
      If[type == "first-order",
       Plot3D[
        f[x0, y0] + fx[x0, y0] (x - x0) + fy[x0, y0] (y - y0), {x, 
         x0 - len, x0 + len}, {y, y0 - len, y0 + len}, Mesh -> False, 
        PlotPoints -> 3],
       If[type == "second-order",
        Plot3D[
         f[x0, y0] + fx[x0, y0] (x - x0) + 
          fy[x0, y0] (y - y0) + .5 fxx[x0, y0] (x - x0)^2 + .5 fyy[x0, 
            y0] (y - y0)^2 + fxy[x0, y0] (x - x0) (y - y0), {x, x0 - len, 
          x0 + len}, {y, y0 - len, y0 + len}, Mesh -> False],
        Plot3D[
         f[x0, y0] + fx[x0, y0] (x - x0) + 
          fy[x0, y0] (y - y0) + .5 fxx[x0, y0] (x - x0)^2 + .5 fyy[x0, 
            y0] (y - y0)^2 + fxy[x0, y0] (x - x0) (y - y0)
          + (1/6)*(
            fxxx[x0, y0] (x - x0)^3
             + 3 fxxy[x0, y0] (x - x0)^2 (y - y0)
             + 3 fxyy[x0, y0] (x - x0) (y - y0)^2
             + fyyy[x0, y0] (y - y0)^3
            ), {x, x0 - len, x0 + len}, {y, y0 - len, y0 + len}, 
         Mesh -> False]
        ]
       ], ImageSize -> {400, 400}
      ],
     {{pt, {2.565, 2.585}, 
       Row[{"(", Subscript["x", 0], ", ", Subscript["y", 0], ")"}]}, {0, 
       0}, {5, 5}},
     {{type, "first-order", ""}, {"first-order", "second-order", 
       "third-order"}},
     ControlPlacement -> {Left, Top}, SaveDefinitions -> True, 
     TrackedSymbols -> True]

    Category: Calculus III | Added by: webmaster (2016-02-06)
    Views: 592 | Tags: plano tangente, superficies, polinomio de taylor de dos variable
    SOFT JAR © 2024
    Create a free website with uCoz