Thursday, 2024-12-12, 6:53 AM

Main Sign Up Login
Welcome, Guest · RSS
Site menu
Search
Site friends
  • acmgmat
  • nano-unt
  • fc-unt
  • accf
  • Statistics

    Total online: 3
    Guests: 3
    Users: 0
     Publisher
    Main » Articles » E-Learn » Calculus III

    Solid of Revolution

     

    =============================================================

    Manipulate[
     Show[{
       curverev1, curve2low,
       Graphics3D[
        {
         Line[{{1, 0, -.04}, {1, 0, .04}}],
         Line[{{4, 0, -.04}, {4, 0, .04}}],
         {Text[
           Row[{Style["y", Italic], " = ", Style["f", Italic], "(", 
             Style["x", Italic], ")"}], {4.75, 0, 1.2}],
          Text[
           Style[Row[{Style["y", Italic], " = ", Style["g", Italic], "(", 
              Style["x", Italic], ")"}], 14], {4.75, 0, .55}],
          If[\[Theta]1 < \[Pi]/2 || (Not[solidrev1] && \[Theta]1 > \[Pi]),
            Text[Style["a", Italic], {.95, 0, -.25}], {}],
          If[\[Theta]1 < \[Pi]/2 || (Not[solidrev1] && \[Theta]1 > \[Pi]),
            Text[Style["b", Italic], {4, 0, -.25}], {}],
          Text[Style["x", Italic], {5.2, 0, 0}],
          Text[Style["y", Italic], {0, 0, 1.5}]},
         {RGBColor[0, 0, 0], Line[{{0, 0, 0}, {5, 0, 0}}], 
          Line[{{0, 0, -4}, {0, 0, 4}}]},
         If[(regionrev1 && Not[solidrev1]) || (regionrev1 && 
             solidrev1 && \[Theta]1 < 2 \[Pi]), {EdgeForm[None], 
           LightBlue, 
           Polygon[Join[
             Table[{x, (.25 Sin[2 x + 1] + 
                  1) Sin[-\[Theta]1], (.25 Sin[2 x + 1] + 
                  1) Cos[-\[Theta]1]}, {x, 1, 4, .015}], 
             Table[{x, (.15 Cos[2 x + 1] + .5) Sin[-\[Theta]1], (.15 Cos[
                    2 x + 1] + .5) Cos[-\[Theta]1]}, {x, 4, 
               1, -.015}]]]}, {}],
         If[solidrev1, {EdgeForm[None], 
           If[washtran, Opacity[.75], Opacity[1]], 
           Polygon[Join[
             Table[{4, (.25 Sin[9] + 1) Sin[-\[Theta]], (.25 Sin[9] + 
                  1) Cos[-\[Theta]]}, {\[Theta], 
               0, \[Theta]1, \[Pi]/100}], 
             Table[{4, (.15 Cos[9] + .5) Sin[-\[Theta]], (.15 Cos[
                    9] + .5) Cos[-\[Theta]]}, {\[Theta], \[Theta]1, 
               0, -\[Pi]/100}]]]}, {}],
         If[solidrev1, {EdgeForm[None], 
           If[washtran, Opacity[.75], Opacity[1]], 
           Polygon[Join[
             Table[{1, (.25 Sin[3] + 1) Sin[-\[Theta]], (.25 Sin[3] + 
                  1) Cos[-\[Theta]]}, {\[Theta], 
               0, \[Theta]1, \[Pi]/100}], 
             Table[{1, (.15 Cos[3] + .5) Sin[-\[Theta]], (.15 Cos[
                    3] + .5) Cos[-\[Theta]]}, {\[Theta], \[Theta]1, 
               0, -\[Pi]/100}]]]}, {}]
         }],
       If[solidrev1, 
        RevolutionPlot3D[.25 Sin[2 t + 1] + 1, {t, 1, 4}, {\[Theta], 
          0, \[Theta]1}, RevolutionAxis -> {1, 0, 0}, 
         PerformanceGoal -> "Quality", Mesh -> None, 
         PlotStyle -> If[washtran, Opacity[.5], Opacity[1]]], {}],
       If[solidrev1 && washtran, 
        RevolutionPlot3D[.15 Cos[2 t + 1] + .5, {t, 1, 4}, {\[Theta], 
          0, \[Theta]1}, RevolutionAxis -> {1, 0, 0}, 
         PerformanceGoal -> "Quality", Mesh -> None, 
         PlotStyle -> Opacity[1]], {}]
       }, PlotRange -> {{0, 5}, {-2, 2}, {-1.3, 1.3}},
      AxesOrigin -> {0, 0, 0}, Boxed -> False, 
      Axes -> {None, None, Automatic}, ViewPoint -> {1.5, -4, 0}, 
      Background -> White, ImageSize -> {450, 450}, 
      Ticks -> {{1, 4}, None, None}, BaseStyle -> 14]
     ,
     Delimiter,
     Grid[{{
        Control[{{regionrev1, True, "region"}, Checkbox}],
        Spacer[15],
        Control[{{solidrev1, True, "solid"}, Checkbox}],
        Spacer[15],
        Control[{{washtran, False, "transparent"}, Checkbox}],
        }}],
     {{\[Theta]1, \[Pi], "rotate"}, .0001, 2 \[Pi], 
      Enabled -> Dynamic[(regionrev1 || solidrev1)]},
     Initialization :> (curve2low = 
        ParametricPlot3D[{x, 0, .15 Cos[2 x + 1] + .5}, {x, .5, 4.5}, 
         PlotStyle -> {Black, AbsoluteThickness[1.75]}]; 
       curverev1 = 
        ParametricPlot3D[{x, 0, .25 Sin[2 x + 1] + 1}, {x, .5, 4.5}, 
         PlotStyle -> {Black, AbsoluteThickness[1.75]}]),
     SaveDefinitions -> True, AutorunSequencing -> {2, 4}]

    Category: Calculus III | Added by: webmaster (2016-02-13)
    Views: 334 | Tags: sólidos de revolución, funciones de varias variables
    SOFT JAR © 2024
    Create a free website with uCoz