================================================================
Manipulate[
Switch[views,
uno, Pane[Grid[{
{Text@
Row[{"surface area S \[TildeTilde] \[Sum] ",
Style["\!\(\*SubscriptBox[\(C\), \
\(k\)]\)\[Times]\!\(\*SubscriptBox[\(W\), \(k\)]\)", Italic], ","},
BaseStyle -> {Bold, 15}]},
{Text@
Row[{"where ",
Style["\!\(\*SubscriptBox[\(C\), \(k\)]\) and \
\!\(\*SubscriptBox[\(W\), \(k\)]\)", Italic],
" are the circumference and width of the ",
Style["\!\(\*SuperscriptBox[\(k\), \(th\)]\)", Italic],
" band."}, BaseStyle -> {Bold, 15}]},
{Text@
Row[{ "S = ",
TraditionalForm@
HoldForm[\[Integral]2 \[Pi] y \[DifferentialD] s]},
BaseStyle -> {Bold, 14}]},
{Text@Row[{" = ", TraditionalForm@HoldForm[\!\(
\*SubsuperscriptBox[\(\[Integral]\), \(a\), \(b\)]\(2 \[Pi]\ y
\*SqrtBox[\(1 +
\*SuperscriptBox[\((
\*FractionBox[\(d y\), \(d x\)])\), \(2\)]\)] \[DifferentialD]\
x\)\)], "."}, BaseStyle -> {Bold, 14}]},
{Show[{movable = True; rotatable = True; clickable = True;
selectable = False;
If[xcoord && strip, Graphics3D[{
{Dashed, Thick,
Line[{{aa, 0, 0}, {aa, 0, Sqrt[aa] + Sin[aa]}}]},
{Dashed, Thick,
Line[{{aa + 0.5, 0, 0}, {aa + 0.5, 0,
Sqrt[aa + 0.5] + Sin[aa + 0.5]}}]},
Text[Style[TraditionalForm@Subscript[x, k - 1],
Bold], {aa - 0.4, 0, -.5}],
Text[Style["\!\(\*SubscriptBox[\(x\), \(k\)]\)", Bold,
Italic], {aa + 0.8, 0, -.5}],
Text[Style["P", 12, Bold, Red], {aa, 0,
Sqrt[aa] + Sin[aa] + .6}],
Text[Style["Q", 12, Bold, Red], {aa + 0.5, 0,
Sqrt[aa + 0.5] + Sin[aa + 0.5] + .7}]
}], {}],
Graphics3D
[{
{EdgeForm[None],
Polygon[
Prepend[
Table[{4.5, (Sqrt[4.5] +
Sin[4.5]) Sin[-\[Theta]], (Sqrt[4.5] +
Sin[4.5]) Cos[-\[Theta]]}, {\[Theta],
0, \[Theta]n, \[Pi]/36}], {4.5, 0, 0}]]},
{EdgeForm[None],
Polygon[
Prepend[
Table[{14, (Sqrt[14] +
Sin[14]) Sin[-\[Theta]], (Sqrt[14] +
Sin[14]) Cos[-\[Theta]]}, {\[Theta],
0, \[Theta]n, \[Pi]/36}], {14, 0, 0}]]}
}, BaseStyle -> If[trans, Opacity[0.5], Opacity[.9]]],
curve, axis,
If[strip,
RevolutionPlot3D[
Sqrt[x] + Sin[x], {x, aa, aa + 0.5}, {\[Theta],
0, \[Theta]n}, RevolutionAxis -> {1, 0, 0}, Mesh -> None,
BoundaryStyle -> Directive[Red, Thick],
PlotStyle -> {Opacity[1], Red},
PerformanceGoal -> "Quality"], {}],
RevolutionPlot3D[
Sqrt[x] + Sin[x], {x, 4.5, 14}, {\[Theta], 0, \[Theta]n},
RevolutionAxis -> {1, 0, 0}, Mesh -> None,
PlotStyle -> If[trans, Opacity[0.5], Opacity[0.9]],
PerformanceGoal -> "Quality"]}, Boxed -> False,
ViewPoint -> Front, ImageSize -> {500, 300},
PlotRange -> {{0, 15}, {-6, 6}, {-6, 6}}]}
}], {500, 400}
],
dos, Pane[Grid[{
{Text@
TraditionalForm@
Row[{"circumference of a circle = ", 2 \[Pi] y,
" \[TildeTilde] ", 2 \[Pi],
HoldForm[(f[Subscript[x, k - 1]] + f[Subscript[x, k]])/(
"2")]}, BaseStyle -> {Bold, 14}]},
{Show[{graphics1, movable = False; clickable = False;
rotatable = True;
RevolutionPlot3D[Sqrt[x], {x, 1, 3}, {\[Theta], 0, \[Theta]n},
RevolutionAxis -> {1, 0, 0}, Mesh -> None,
PlotStyle -> If[trans, Opacity[0.5], Opacity[0.9]],
Axes -> False, PerformanceGoal -> "Quality"],
If[xcoord, Graphics3D[{
{Dashed, Thick, Red, Line[{{1, 0, 0}, {1, 0, 1}}]},
{Dashed, Thick, Red, Line[{{3, 0, 0}, {3, 0, Sqrt[3]}}]},
Text["\!\(\*SubscriptBox[\(x\), \(k - 1\)]\)", {1, 0, -.5}],
Text["\!\(\*SubscriptBox[\(x\), \(k\)]\)", {3,
0, -.5}]}], {}]
}, Boxed -> False, ViewPoint -> Front,
ImageSize -> {500, 300},
PlotRange -> {{0, 4}, {-3, 3}, {-3, 3}}]}
}], {500, 400}
],
tres, Pane[Grid[{
{Text@Row[{"band width = arc(PQ)"}, BaseStyle -> {Bold, 14}]},
{Text@
Style[Row[{" |PQ| = ",
Sqrt[Superscript[
Subscript[Row[{"\[CapitalDelta]", Style["x", Italic]}],
Style["k", Italic]], 2] +
Superscript[
Subscript[Row[{"\[CapitalDelta]", Style["y", Italic]}],
Style["k", Italic]], 2]]}], Bold, 14]},
{Show[{movable = False; rotatable = False; selectable = True;
clickable = False; graphics2,
Plot[(-(x^2) + 10), {x, 0, 3},
PlotRange -> {{0, 3.5}, {0, 12}}, Axes -> False]
}, ImageSize -> {300, 200},
ImagePadding -> {{60, 60}, {10, 10}}]}
}, Alignment -> Center], {500, 400}]
],
{{\[Theta]n, \[Pi], "rotate"}, 0.001, 2 \[Pi],
Enabled -> Dynamic[rotatable]},
{{aa, 8, "strip location"}, 4.5, 13.5,
Enabled -> Dynamic[strip && movable]},
Grid[{{
Control[{{xcoord, True, "x coordinates"}, Checkbox,
Enabled -> Dynamic[strip && Not[selectable]]}], Spacer[20],
Control[{{trans, True, "transparent"}, Checkbox,
Enabled -> Dynamic[strip && Not[selectable]]}], Spacer[20],
Control[{{strip, True, "strip"}, Checkbox,
Enabled -> Dynamic[clickable]}]
}}],
{{views, uno, "views"}, {uno -> "solid", dos -> "frustrum of a cone",
tres -> "arc length"}, ControlType -> PopupMenu},
Initialization :> (
curve =
ParametricPlot3D[{x, 0, Sqrt[x] + Sin[x]}, {x, 4.5, 14},
PlotStyle -> {Black, AbsoluteThickness[3]}, Axes -> False,
Boxed -> False];
curve2 =
ParametricPlot3D[{x, 0, Sqrt[x]}, {x, 1, 3},
PlotStyle -> {Black, AbsoluteThickness[3]}, Axes -> False,
Boxed -> False];
axis = Graphics3D[{Line[{{0, 0, 0}, {20, 0, 0}}],
Line[{{0, 0, -4}, {0, 0, 4}}],
Line[{{4.5, 0, -.05}, {4.5, 0, .05}}],
Line[{{14, 0, -.05}, {14, 0, .05}}],
Text[Style["a", Italic], {4.5, 0, -2}],
Text[Style["b", Italic], {14, 0, -2}],
Text[Style["x", Italic], {20.7, 0, 0}],
Text[Style["y", Italic], {0, 0, 4.7}],
Text[
Row[{Style["y", 15, Italic], " = ", Style["f", 15, Italic],
"(", Style["x", 15, Italic], ")"}], {6, 0, 4}]}];
graphics1 = Graphics3D[{
Text[Style["x", Italic], {5.3, 0, 0}],
Line[{{0, 0, 0}, {5, 0, 0}}],
{Dashed, Thick, Line[{{2, 0, 0}, {2, 0, Sqrt[2]}}]},
Text[Style["P", 12, Bold, Red], {1, 0, 1.5}],
Text[Style["Q", 12, Bold, Red], {3, 0, Sqrt[3] + .4}],
Text[Style["y", 15, Bold, Italic, Red], {2.3, 0, .5}],
Text[Row[{"\[CapitalDelta]", Style["x", Italic]}], {2, 0, 2}],
Polygon[
Prepend[Table[{2, (Sqrt[2]) Sin[-\[Theta]], (Sqrt[
2]) Cos[-\[Theta]]}, {\[Theta], 0, 2 \[Pi], \[Pi]/
36}], {2, 0, 0}]]
}, BaseStyle -> Bold];
graphics2 = Graphics[{
{Dashed, Thick, Line[{{0.5, 3.75}, {0.5, 39/4}}]},
{Dashed, Thick, Line[{{0.5, 3.75}, {2.5, 3.75}}]},
{Thick, Line[{{0.5, 39/4}, {2.5, 3.75}}]},
Line[{{0.5, 4.5}, {0.6, 4.5}}],
Line[{{0.6, 3.75}, {0.6, 4.5}}],
Text[Style["P", 17, Bold, Red], {0.5, 10.0}],
Text[Style["Q", 17, Bold, Red], {2.67, 3.75}],
Text[
Style[TraditionalForm@
Row[{L, " = ",
HoldForm[
Sqrt[(\[CapitalDelta] Subscript[x,
k])^2 + (\[CapitalDelta] Subscript[y, k])^2]]}], 13,
Bold, Red], {3, 9.3}],
Text[
Style[Row[{\[CapitalDelta], Subscript[x, k]}], 15, Bold,
Red], {1.5, 4}],
Text[
Style[Row[{\[CapitalDelta], Subscript[y, k]}], 15, Bold,
Red], {0.2, 6.5}],
Arrow[{{1.7, 9}, {1.2, 8}}]
}, BaseStyle -> Bold]
)]
|