Thursday, 2024-12-12, 6:47 AM

Main Sign Up Login
Welcome, Guest · RSS
Site menu
Search
Site friends
  • acmgmat
  • nano-unt
  • fc-unt
  • accf
  • Statistics

    Total online: 4
    Guests: 4
    Users: 0
     Publisher
    Main » Articles » E-Learn » Calculus III

    Surface area of a solid of revolution

    ================================================================

    Manipulate[
     
     Switch[views,
      
      uno, Pane[Grid[{
         {Text@
           Row[{"surface area S \[TildeTilde] \[Sum] ", 
             Style["\!\(\*SubscriptBox[\(C\), \
    \(k\)]\)\[Times]\!\(\*SubscriptBox[\(W\), \(k\)]\)", Italic], ","}, 
            BaseStyle -> {Bold, 15}]},
         {Text@
           Row[{"where ", 
             Style["\!\(\*SubscriptBox[\(C\), \(k\)]\) and \
    \!\(\*SubscriptBox[\(W\), \(k\)]\)", Italic], 
             " are the circumference and width of the ", 
             Style["\!\(\*SuperscriptBox[\(k\), \(th\)]\)", Italic], 
             " band."}, BaseStyle -> {Bold, 15}]},
         {Text@
           Row[{ "S = ", 
             TraditionalForm@
              HoldForm[\[Integral]2 \[Pi] y \[DifferentialD] s]}, 
            BaseStyle -> {Bold, 14}]},
         {Text@Row[{" = ", TraditionalForm@HoldForm[\!\(
    \*SubsuperscriptBox[\(\[Integral]\), \(a\), \(b\)]\(2  \[Pi]\ y 
    \*SqrtBox[\(1 + 
    \*SuperscriptBox[\((
    \*FractionBox[\(d y\), \(d x\)])\), \(2\)]\)] \[DifferentialD]\ 
                  x\)\)], "."}, BaseStyle -> {Bold, 14}]},
         {Show[{movable = True; rotatable = True; clickable = True; 
            selectable = False;
            If[xcoord && strip, Graphics3D[{
               {Dashed, Thick, 
                Line[{{aa, 0, 0}, {aa, 0, Sqrt[aa] + Sin[aa]}}]},
               {Dashed, Thick, 
                Line[{{aa + 0.5, 0, 0}, {aa + 0.5, 0, 
                   Sqrt[aa + 0.5] + Sin[aa + 0.5]}}]},
               
               Text[Style[TraditionalForm@Subscript[x, k - 1], 
                 Bold], {aa - 0.4, 0, -.5}],
               
               Text[Style["\!\(\*SubscriptBox[\(x\), \(k\)]\)", Bold, 
                 Italic], {aa + 0.8, 0, -.5}],
               
               Text[Style["P", 12, Bold, Red], {aa, 0, 
                 Sqrt[aa] + Sin[aa] + .6}],
               
               Text[Style["Q", 12, Bold, Red], {aa + 0.5, 0, 
                 Sqrt[aa + 0.5] + Sin[aa + 0.5] + .7}]
               }], {}],
            Graphics3D
             [{
              {EdgeForm[None], 
               Polygon[
                Prepend[
                 Table[{4.5, (Sqrt[4.5] + 
                      Sin[4.5]) Sin[-\[Theta]], (Sqrt[4.5] + 
                      Sin[4.5]) Cos[-\[Theta]]}, {\[Theta], 
                   0, \[Theta]n, \[Pi]/36}], {4.5, 0, 0}]]},
              {EdgeForm[None], 
               Polygon[
                Prepend[
                 Table[{14, (Sqrt[14] + 
                      Sin[14]) Sin[-\[Theta]], (Sqrt[14] + 
                      Sin[14]) Cos[-\[Theta]]}, {\[Theta], 
                   0, \[Theta]n, \[Pi]/36}], {14, 0, 0}]]}
              }, BaseStyle -> If[trans, Opacity[0.5], Opacity[.9]]],
            curve, axis,
            If[strip, 
             RevolutionPlot3D[
              Sqrt[x] + Sin[x], {x, aa, aa + 0.5}, {\[Theta], 
               0, \[Theta]n}, RevolutionAxis -> {1, 0, 0}, Mesh -> None, 
              BoundaryStyle -> Directive[Red, Thick], 
              PlotStyle -> {Opacity[1], Red}, 
              PerformanceGoal -> "Quality"], {}],
            RevolutionPlot3D[
             Sqrt[x] + Sin[x], {x, 4.5, 14}, {\[Theta], 0, \[Theta]n}, 
             RevolutionAxis -> {1, 0, 0}, Mesh -> None, 
             PlotStyle -> If[trans, Opacity[0.5], Opacity[0.9]], 
             PerformanceGoal -> "Quality"]}, Boxed -> False, 
           ViewPoint -> Front, ImageSize -> {500, 300}, 
           PlotRange -> {{0, 15}, {-6, 6}, {-6, 6}}]}
         }], {500, 400}
       ],
      
      dos, Pane[Grid[{
         {Text@
           TraditionalForm@
            Row[{"circumference of a circle = ", 2 \[Pi] y, 
              " \[TildeTilde] ", 2 \[Pi], 
              HoldForm[(f[Subscript[x, k - 1]] + f[Subscript[x, k]])/(
               "2")]}, BaseStyle -> {Bold, 14}]},
         {Show[{graphics1, movable = False; clickable = False; 
            rotatable = True;
            RevolutionPlot3D[Sqrt[x], {x, 1, 3}, {\[Theta], 0, \[Theta]n},
              RevolutionAxis -> {1, 0, 0}, Mesh -> None, 
             PlotStyle -> If[trans, Opacity[0.5], Opacity[0.9]], 
             Axes -> False, PerformanceGoal -> "Quality"],
            If[xcoord, Graphics3D[{
               {Dashed, Thick, Red, Line[{{1, 0, 0}, {1, 0, 1}}]},
               {Dashed, Thick, Red, Line[{{3, 0, 0}, {3, 0, Sqrt[3]}}]},
               Text["\!\(\*SubscriptBox[\(x\), \(k - 1\)]\)", {1, 0, -.5}],
               
               Text["\!\(\*SubscriptBox[\(x\), \(k\)]\)", {3, 
                 0, -.5}]}], {}]
            }, Boxed -> False, ViewPoint -> Front, 
           ImageSize -> {500, 300}, 
           PlotRange -> {{0, 4}, {-3, 3}, {-3, 3}}]}
         
         }], {500, 400}
       ],
      
      tres, Pane[Grid[{
         {Text@Row[{"band width = arc(PQ)"}, BaseStyle -> {Bold, 14}]},
         {Text@
           Style[Row[{"  |PQ| = ", 
              Sqrt[Superscript[
                 Subscript[Row[{"\[CapitalDelta]", Style["x", Italic]}], 
                  Style["k", Italic]], 2] + 
                Superscript[
                 Subscript[Row[{"\[CapitalDelta]", Style["y", Italic]}], 
                  Style["k", Italic]], 2]]}], Bold, 14]},
         {Show[{movable = False; rotatable = False; selectable = True; 
            clickable = False; graphics2, 
            Plot[(-(x^2) + 10), {x, 0, 3}, 
             PlotRange -> {{0, 3.5}, {0, 12}}, Axes -> False]
            }, ImageSize -> {300, 200}, 
           ImagePadding -> {{60, 60}, {10, 10}}]}
         }, Alignment -> Center], {500, 400}]
      ],
     
     {{\[Theta]n, \[Pi], "rotate"}, 0.001, 2 \[Pi], 
      Enabled -> Dynamic[rotatable]},
     {{aa, 8, "strip location"}, 4.5, 13.5, 
      Enabled -> Dynamic[strip && movable]},
     Grid[{{
        Control[{{xcoord, True, "x coordinates"}, Checkbox, 
          Enabled -> Dynamic[strip && Not[selectable]]}], Spacer[20],
        Control[{{trans, True, "transparent"}, Checkbox, 
          Enabled -> Dynamic[strip && Not[selectable]]}], Spacer[20],
        Control[{{strip, True, "strip"}, Checkbox, 
          Enabled -> Dynamic[clickable]}]
        }}],
     {{views, uno, "views"}, {uno -> "solid", dos -> "frustrum of a cone",
        tres -> "arc length"}, ControlType -> PopupMenu},
     Initialization :> (
       curve = 
        ParametricPlot3D[{x, 0, Sqrt[x] + Sin[x]}, {x, 4.5, 14}, 
         PlotStyle -> {Black, AbsoluteThickness[3]}, Axes -> False, 
         Boxed -> False];
       curve2 = 
        ParametricPlot3D[{x, 0, Sqrt[x]}, {x, 1, 3}, 
         PlotStyle -> {Black, AbsoluteThickness[3]}, Axes -> False, 
         Boxed -> False];
       axis = Graphics3D[{Line[{{0, 0, 0}, {20, 0, 0}}],
          Line[{{0, 0, -4}, {0, 0, 4}}],
          Line[{{4.5, 0, -.05}, {4.5, 0, .05}}],
          Line[{{14, 0, -.05}, {14, 0, .05}}],
          Text[Style["a", Italic], {4.5, 0, -2}],
          Text[Style["b", Italic], {14, 0, -2}],
          Text[Style["x", Italic], {20.7, 0, 0}],
          Text[Style["y", Italic], {0, 0, 4.7}],
          Text[
           Row[{Style["y", 15, Italic], " = ", Style["f", 15, Italic], 
             "(", Style["x", 15, Italic], ")"}], {6, 0, 4}]}];
       graphics1 = Graphics3D[{
          Text[Style["x", Italic], {5.3, 0, 0}],
          Line[{{0, 0, 0}, {5, 0, 0}}],
          {Dashed, Thick, Line[{{2, 0, 0}, {2, 0, Sqrt[2]}}]},
          Text[Style["P", 12, Bold, Red], {1, 0, 1.5}],
          Text[Style["Q", 12, Bold, Red], {3, 0, Sqrt[3] + .4}],
          Text[Style["y", 15, Bold, Italic, Red], {2.3, 0, .5}],
          Text[Row[{"\[CapitalDelta]", Style["x", Italic]}], {2, 0, 2}],
          Polygon[
           Prepend[Table[{2, (Sqrt[2]) Sin[-\[Theta]], (Sqrt[
                 2]) Cos[-\[Theta]]}, {\[Theta], 0, 2 \[Pi], \[Pi]/
              36}], {2, 0, 0}]]
          }, BaseStyle -> Bold];
       graphics2 = Graphics[{
          {Dashed, Thick, Line[{{0.5, 3.75}, {0.5, 39/4}}]},
          {Dashed, Thick, Line[{{0.5, 3.75}, {2.5, 3.75}}]},
          {Thick, Line[{{0.5, 39/4}, {2.5, 3.75}}]},
          Line[{{0.5, 4.5}, {0.6, 4.5}}],
          Line[{{0.6, 3.75}, {0.6, 4.5}}],
          Text[Style["P", 17, Bold, Red], {0.5, 10.0}],
          Text[Style["Q", 17, Bold, Red], {2.67, 3.75}],
          Text[
           Style[TraditionalForm@
             Row[{L, " = ", 
               HoldForm[ 
                Sqrt[(\[CapitalDelta] Subscript[x, 
                   k])^2 + (\[CapitalDelta] Subscript[y, k])^2]]}], 13, 
            Bold, Red], {3, 9.3}],
          Text[
           Style[Row[{\[CapitalDelta], Subscript[x, k]}], 15, Bold, 
            Red], {1.5, 4}],
          Text[
           Style[Row[{\[CapitalDelta], Subscript[y, k]}], 15, Bold, 
            Red], {0.2, 6.5}],
          Arrow[{{1.7, 9}, {1.2, 8}}]
          }, BaseStyle -> Bold]
       )]

    Category: Calculus III | Added by: webmaster (2016-02-13)
    Views: 809 | Tags: sólido, surface area of a solid of revoluti, superficie, área, superficie de un sólido de revoluci, Revolución
    SOFT JAR © 2024
    Create a free website with uCoz