Thursday, 2024-12-12, 5:34 AM

Main Sign Up Login
Welcome, Guest · RSS
Site menu
Search
Site friends
  • acmgmat
  • nano-unt
  • fc-unt
  • accf
  • Statistics

    Total online: 4
    Guests: 4
    Users: 0
     Publisher
    Main » Articles » E-Learn » Numerical Methods

    Fixed Point Iteration Method - Wolfram Mathematica v10.

    ROOTFINDING

     

     Fixed Point Method

    www.jesus-avalos.ucoz.com

     

    ALGORITHM CODE:

     FixedPointIteration[x0_,max_]:=Module[{},p0=N[x0];k=0;

       Print["0  p=",PaddedForm[p0,{15,15}]];

       While[k<max,Module[{},p1=g[p0];k=k+1;

          Print[" p"k, "=", PaddedForm[p1,{15,15}]];

          p0=p1;];];

       p=p0;

       Print[" "];

       Print["The function is g[x]=", g[x]];

       Print["  p=",PaddedForm[p,{15,15}]];

       Print["g[p]=",PaddedForm[g[p],{15,15}]];];

     

     

    EXAMPLE: x^3+x-1=0

     g[x_]=(1-x)1/3

     

     FixedPointIteration[0.5,12]

     0  p=  0.500000000000000

      p =  0.793700525984100

     2  p =  0.590880113275177

     3  p =  0.742363932168006

     4  p =  0.636310203481661

     5  p =  0.713800814144207

     6  p =  0.659006145622400

     7  p =  0.698632605730219

     8  p =  0.670448496228072

     9  p =  0.690729120589141

     10  p =  0.676258924926827

     11  p =  0.686645536864490

     12  p =  0.679222339897004

     13  p =  0.684544005469716

     

     The function is g[x]= (1-x)1/3

       p=  0.684544005469716

     g[p]=  0.680737373803562

     Plot[{x^3+x-1,(1-x)1/3, x},{x,0,1}]

     

    Category: Numerical Methods | Added by: JARMASTER (2015-08-05)
    Views: 1904 | Tags: Wolfram Mathematica, método del punto fijo, Fixed pint iteration method
    SOFT JAR © 2024
    Create a free website with uCoz